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COLLAPSE OF A SPHERICAL CAVITY, INDUCED BY AN UNDERWATER SPARK, 

NEAR A SOLID WALL 

V. A. Burtsev and V. V. Shamko UDC 532.528 

A knowledge of the laws of the physical processes accompanying the collapse of cavities, 
formed by an underwater spark, in the presence of asymmetric boundary conditions is very im- 
portant for a proper understanding of the causes responsible for the phenomena. We know, 
for instance, that neglect of the flow energy in the dynamic calculation of structures for 
impact loading of the explosion type can lead in several cases to overestimation of the the- 
oretical source energy by a factor of two [i, 2]. In addition, a clarification of this ques- 
tion will lead to improvement in the technology of electric pulse processes in'water [3]. 

The few theoretical [4-9] and experimental [10-13] investigations of the effect of a 
solid wall on the collapse of a spherical cavity in a liquid medium indicate deformation of 
the cavity, the formation of a liquid jet in the direction of the wall at the concluding 
stage of collapse, and consequent damage to the wall under certain conditions [9-13]. The 
proximity of the wall is also the reason for the translational movement of the cavity or its 
center toward the wall. 

In some theoretical studies [5, 6], spherical collapse of a cavity has been considered, 
and the quantitative characteristics of the process obtained for this case have been used in 
some calculations [14]. Kling et al. [13] made a thorough experimental investigation of the 
quantitative picture of the effect of an adjacent solid surface on the collapse of spark- 
induced bubbles, but their experiments were conducted in a flow of liquid, i.e., in the pres- 
ence of another additional source of asymmetry -- the slip of the bubble in the flow, which 
leads to a significant change in the nature of cavity collapse [4, 9, 15]. 

The aim of the present work was an experimental verification of the applicability of 
the available experimental models for a description of the dynamics of collapse of a spheri- 
cal vapor-gas cavity (VGC), formed by an underwater spark, near a plane solid wallo 

i. Description of Experimental Apparatus and Methods of Investigation. The experi- 
ments were conducted in a special tank (1500 x i000 • 500 mm) filled with distilled water. 
The tank was furnished with two Plexiglas windows, which enabled us to photograph :the process 
in transmitted light from a powerful source. The solid wall was a square Viniplast sheet 
20 mm thick, whose linear dimensions exceeded the maximum cavity diameter by a factor of 
more than two. The wall surface was set perpendicular to the free surface of the liquid. The 
gas cavity was formed by an underwater spark produced by the discharge of a I-~F capacitor 
bank across a 10-mm spark gap. The charging voltage was 25 kV and the circuit inductance 
was 3 ~H. The stability of the discharge (and, accordingly, of the p&rameters of the induced 
bubble) was maintained by straightening of the spark channel with a Constantan wire (diameter 
0.003 mm) and by natural degassing of the liquid. The electrodes consisted of two copper 
needles of diameter 4 mm. The discharge took place at a depth of 240 mm, so that even in 
the case of a bubble of maximum radius (53 mm) the free surface had no effect on its motion 
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[16]. The normalized distance to the wall b~ (the ratio of the initial distance of the cen- 
ter of the VGC from the wall to its maximum radius b~ = b~/Rmax) was made equal to b*o = 
0.6, 0.7, 0.8, 1.05, i.i, 1.6, 2.2, and 5.5. The process was photographed with an SFR-2M 
high-speed camera operating under frame-scanning conditions at a rate of (1.5-30).10 ~ frames/ 
sec. The range of speeds of the SFR-2M camera was enlarged by the use of a special attach- 
ment that greatly reduced the rate of rotation of the mirror [17]. The rate of rotation 
of the mirro~ was measured by recording the pulse repetition rate from a photosensor from 
the Lissajou figures with the aid of an SI-16 oscilloscope. 

2. Results of Motion-Picture Observations. Figure i shows a series of frames demon- 
strating the collapse of a VGC formed by an underwater spark at different distances from 
the wall [b~ = 5.5 (a), 2.2 (b), 1.6 (c), i.i (d), 0.8 (e), and 0.6 (f)]. The time between 
frames in all cases was the same and equalled At = 0.76 msec [dimensionless time AT = At(p=/ 
p~)~/2/Rma x = 0.143]. It is apparent that during the collapse of a bubble at a distance I.i 

b~ ~ 2 from the wall it loses its initial spherical shape. The cavity becomes extended along 
a normal to the wall and acquires an ovoid shape. 

The formation of an ovoid cavity at b~ ~ 2 indicates a low flow strength on the side of 
the plane. Hence, the pressure difference existing at the start of collapse (Ap ~ i arm) is 
not sufficient to tear the water away from the wall. Specially conducted experiments with 
a nonwettable solid wall (of Ftoroplast) at the same Ap did not show any appreciable differ- 
ence in the picture of the process. 

The rear (farthest from the wall) boundary cavity acquires a higher velocity than the 
other regions. Surface disturbances occur on it and lead to shape instability and the forma- 
tion of a cumulative jet of liquid. The appearance of the jet was indicated by the crumpling 
and destruction of the spherical profile of the cavity. 

The reasons for deformation of the VGC are quite understandable from the qualitative as- 
pect. Not only capillary forces, but also forces of hydrodynamic origin act on the bubble 
surface. The introduction of asymmetry by the close solid surface alters the configuration 
of the hydrodynamic field. On the plane side the liquid flow is weakened, and at a number 
of peripheral points the hydrodynamic forces increase considerably and greatly exceed the 
surface-tension forces. In this case the spherical shape of the bubble (if it is still 
spherical at the time of attainment of maximal volume in the initial expansion), which owes 
its existence to surface tension, becomes unstable, and the bubble becomes capable of de- 
formation, as distinct from the corresponding process in an unbounded liquid. 

It is of interest to note that when b~ < i.i the cavity collides with the wall at the 
collapse stage, and when i.i E b~ < 1.6 the collision occurs at subsequent stages of expan- 
sion. If b~ ~ 1.6, the collapsing cavity subsequently approaches the wall, but does not come 
in contact with it. Hence, when the VGC is at a distance of b~ = 1.6 or more from the wall 
the probability of damage to the wall is greatly reduced [13]. This is confirmed experi- 
mentally by the established fact of increase in the effectiveness of removal of molding ma- 
terials from castings when a discharge on the casting is used [18]. 

We note that in the contraction period the cavity is a figure of revolution (which was 
indicated by passage of the highlight through the center of the VGC and also by the change 
in the light spot visible through the cavity in time with the change in shape of the cavity), 
whereas during repeated pulse cycles it had no regular geometric shape. The cavity at these 
stages became optically opaque, diffusely reflecting and absorbing the light flux incident 
on it. This picture was observed both in the presence and absence of the solid wall. This 
experimental fact is further evidence of asymmetric collapse of the initially spherical VGC, 
The high-speed microjets appearing at the moment of collapse of the cavity break it up into 
numerous small bubbles, whose subsequent development, like the phenomenon as a whole, is due 
to their effect on one another [16, 19]. In fact, in the case of slow flows around bodies 
the secondarily formed cavities retain their transparent surface [15]. With the approach 
of the VGC to the wall the onset of shape instability occurs earlier. 

When b~ = i a spherical bubble cannot form near the wall, i.e., the surface starts to 
become unstable at the moment of formation (see Fig. le). In this case the front boundary 
of the cavity becomes flat (like the wall itself) and remains so until it collides with the 
wall. A further reduction in b~ (0.6 ~ b~ ~ 1.05) leads to even greater deformation of the 
cavity; the front part is cut off, as it were, and has the shape of a spherical segment with 
a height slightly exceeding the equivalent (according to the area of the shadow photograph) 
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radius R*. The value of bY in such cases was determined as the ratio b~/R*. The front 
boundary of the cavity at the growth stage reached the wall only when b~ = 0.6; the formed 
cavity was dome-shaped and remained like this for t ~ 0.8T (see Fig. If, T is the time of 
collapse of the cavity). The nature of the collapse of such cavities differs from the model 
[16] for a hemispherical bubble on a wall. Initially the collapse in a plane parallel to 
the wall is a little more rapid, and only near the minimum is there a sharp increase in ve- 
locity along a normal to the wall. For instance, at the moment of formation of the jet (t = 
0.83T_),determined from the start of crumpling of the rear boundary of the VGC, the veloci- 
ty of the boundary at the point of entry of the jet is 85-100 m/sec. We must infer that the 
jet velocity will be a little greater than the indicated values, since its passage into the 
cavity was not detected owing to the predominant reflection of the light beam by the spheri- 
cal VGC surface. The maximum jet velocity recorded in the conducted experiments was about 
150 m/sec for by = i.i. 

For a thorough investigation of the initiation and passage of the jet into the cavity a 
"thin" flat cavity was created in the direction of the light beam, as in [ii], for instance. 
Such an approach, however, does not guara ~ee against the additional influence of a number of 
boundary effects [12], whose consideration is beyond ~ scope of the present investigation. 
In weightless conditions [15] the collapse of a cavity near a wall is similar to that dis- 
cussed above. Hence, gravitational forces do not have a significant effect on the collapse 
of a VGC near a solid surface and their omission in the equation of motion (as in the the- 
oretical models in [4-8]) is justified. 

3. Effect of Wall on Deformation of Cavity. The outlines of the VGC surface at various 
times for two distances from the wall are shown in Fig. 2. The bottom is the side of the 
cavity nearest the wall. The outline of the cavity was determined by projecting its shadow 
photographs onto a screen with the necessary magnification. For comparison we used the the- 
oretical calculations (dashed-dot lines) of Voinov (Fig. 2a, r = 0, 0.62, 0.82, 0.99), Shima 
(Fig. 2b, T = 0, 0~6, 0.8), Mitchell (Fig. 2c, T=0, 0.6, 0.8, 0.87) for b~ = 1.5 (the ex- 
periment was conducted at by = 1.6), and Kling's experimental data (Fi$. 2d, T = 0, 0.73, 
0.9, i)for by = 1.14. In view of the arbitrary choice of times ~ = t#p~/p=/Rmax, character- 
izing the corresponding VGC outlines, there is some spread at the compared times. The maxi- 
mum spread, however, did not exceed 5%. 

An analysis of Fig. 2 shows that in all the considered cases the bubbles at the early 
stage of collapse (T S 0.6) are quasispherical and there is good agreement between the ex- 
perimental and theoretical profiles. The experiment shows a greater relative elongation of 
the cavity along the normal to the wall than was the case in [7, 9, 13]. The greater dis- 
agreement of the obtained results with the data of [13] is probably due to additional asym- 
metry -- slipping of the bubbles in the liquid flow -- and to the difference in the pressure 
gradients at the phase interface at the initial instant of collapse. For the same reason 
Kling and Hammitt [13] found practically no shift of the front boundary during its collapse. 

The front boundary of the cavity near the minimum acquires a higher velocity and moves 
away from the wall even when b~ = i.I. It is characteristic that in the course of collapse 
the cavity again becomes spherical and only then, in view of the dominant velocity of the 
rear boundary, it is destroyed by the formed jet of liquid. For by = i.i, beginning at T = 
0.7, a dent, due to inflow of liquid into the VGC, is formed on the rear side ~of the cavity. 
This was indicated by the flat profile of this part. The jet attains its maximum velocity 
(150 m/sec) when the bubble reaches its minimum. 

The appreciable movement of the front boundary of the cavity at the concluding stage 
of collapse is probably due to the cumulative effect when the front surface of the cavity at- 
tains its critical curvature, which is confirmed by the absence of such movement in the case 
where the front boundary of the cavity has minimum curvature (see Fig. le). 

The greatest disagreement in cavity outlines was found between the data of the present 
experiment and the numerical calculations of Voinov (see Fig. 2a) and Shima (see Fig. 2b). 
This indicates a large error in models using flow potentiality for the kinematic description 
of the collapse of a VGC induced by an underwater spark near a solid wall. In addition, ow- 
ing to the increasing deformation of the bubble the employed expansions in Legendre polyno- 
mials rapidly become unsuitable. The marker-and-cell technique is more accurate in this 
respect, although the degree of correspondence of the concluding stages of cavity collapse 
cannot be tested owing to cessation of the count at T = 0.873 
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Fig. 2 

As a quantitative characteristic of the deformation of the VGC during its collapse we 
selected (as in [9]) the eccentricity z = (dl -- d=)/(dl + d2), where dl and d2 are the hori- 
zontal and vertical diameters, respectively. The relationships z = z(b~, T) are shown in 
Fig. 3 [Value of b*: i) 0.6; 2) 0.7" 3) 0.8" 4) 1.18" 5) 1.2" 6) 1.6; 7) 2.2] The dashed 

0 ' ~ ' ' �9 

line is Mitchell's theoretical curve [9] for b~ = 1.5�9 

The greatest change in eccentricity (including the change in sign at a later stage of 
collapse) occurs when b~ < i. With increase in b~ in the region b~ < 1 the passage through 
zero is shifted toward larger times. For a bubble initially in contact with the wall (Fig. 
3, curve i) z > 0 during the whole time of collapse, and for b~ > 1 the eccentricity is nega- 
tive (Fig. 3, curves 4-7). 

The presented results (see Fig. 3) are graphic confirmation that a spherical VGC induced 
by an underwater spark near a solid plane wall (b~ > i) becomes extended, on collapsing, along 
a normal to the wall, and it is not until the final stage of collapse that it again becomes 
spherical (dashed continuation of curves). At the same time, the cavity, which initially has 
the shape of a spherical segment, becomes longer initially in a direction parallel to the 
wall, then along a normal to it, and at the concluding stage again in a direction parallel 
to it. If the height of the spherical segment does not exceed 0.6, the cavity during the 
entire period of collapse remains extended parallel to the wall. In the concluding stage of 
collapse (T > 0.95) it is impossible, owing to the sharp change in shape of the cavity, to 
determine the behavior of z(T) (for instance, when b~ = 1.05 the cavity at the minimum ac- 
quires a toroidal shape and the parameter z, proposed above for its characterization, becomes 
meaningless). 

Beginning at b~ > 2.2, the curve of z(r) asymptotically approaches zero, and when b~ = 
5.5 (the curve coincides with the axis) the cavity collapses without deformation, i.e., it 
does not differ in any way from collapse in an unbounded volume. 

A comparison (see Fig. 3) of Mitchell's theoretical curve (dashed line) with the experi- 
mental curve for b~ = 1.6 (curve 6) reveals their satisfactory agreement. Hence, the marker- 
and-cell technique can be used (at least when T < 0�9 for a qualitative description of the 
deformation of a spark-induced VGC when it collapses near a solid wall. 

4. Velocity Distribution near Cavity. The reason for deformation of a cavity lies in 
the formation of an asymmetric velocity distribution when a solid wall is close to it. Fig- 
ures 4a-c show the radial components of the cavity boundary velocity v = R/Vo [for O = 0 (a), 
7/2 (b), ~ (c); Vo = ~p /p ; R = dR~dt] as a function of time for various b~ [b~ = 0.6 (i), 
i.i (2), 1.6 (3), 2.2 (4), 5�9 (5), (6)]. The dashed line shows the Rayleigh solution in 
the absence of a wall for the collapse of an empty cavity in an incompressible liquid (0 is 
the angle between the radius vectors of the closest point to the wall and the considered point 
on the VGC surface). 

A characteristic feature is that the significant difference in velocities for e = 7/2 
and ~ begins at T ~ 0.7, and their sharpest increase occurs when T § i. With increase in 
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b* the velocity decreases and moves away from theRayleigh curve. The obtained result indi- 
O 

cates the erroneousness of the existing view [7, 8] that the velocity of collapse of the 
boundary of the VGC increases with increasing distance of it from the solid wall. 

For any distance from the wall the rear boundary of the cavity has the highest velocity, 
which confirms the conclusion that a directed flow of liquid develops and a jet is formed. 
Owing to the loss of stable shape by the cavity in the conducted experiments we could not 
determine the time of the sharp bend in the velocity curve. For this purpose we would have 
to determine separately the final stage of collapse by "stretching" it in time, since the 
characteristics of the process attain a maximum here and are subject to the greatest changes. 
Such investigations, however, are beyond the scope of the problem considered here. 

The motion of the front boundary of the VGC (O = 0) has several features of its own 
(Fig. 4a). Its velocity at any b~ remains lower than for 0 = 7/2 or O = 7, and increases 
with increase in b~. When b~ ~ 1.6 the front boundary of the cavity moves syndhronously with 
its whole surface, whereas when b~ < 1.6 the start of its motion is shifted to the right 
along the time axis (when b~ = i.i this time is 0.6). If the cavity formed near the solid 
surface has the shape of a truncated sphere (0.6 < b~ < ~.i)the velocity of its boundary 
nearest to the wall is of opposite sign (from that in the case of b~ 2 i.i). When the cavity 
is at a distance b~ > 5 from the wall the velocity of its boundary (for any 0) and, hence, 
the motion of the flow near the cavity are practically the same as for cavity collapse in an 
unbounded medium. 

5. Effect of Wall on Displacement of Center of Cavity and Its Collapse Time. Owing to 
the predominant motion of the surface furthest from the wall the center of the cavity ac- 
quires a motion directed toward the wall. As a quantitative characteristic of this motion 
we took the velocity of displacement of the center vf = f/vo, where f = [(d3 -- Rma x) -- d2/ 

2]/Rma x is the displacement of the center, introduced by Mitchell [9] and schematically de- 

fined in the top left corner of Fig. 5 (f = df/dt). Plots of the velocity of the center 
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against time for various b~ [Fig. 5, i) b~ = 0.7; 2) I.i; 3) 1.6; 4) 2.2] show that an ap- 
preciable movement of the center does not begin unti! T = 0.2. With increasing distance 
of the VGC from the wall the velocity of the center decreases and, beginning at b~ > 5, there 
is no displacement. For comparison Fig. 5 shows the calculated [9] velocity of the center 
for bY = 1.5 (dashed-dot line). Comparison with the corresponding experimental curve 3 
shows a satisfactory agreement. 

The condition for absence of a wail effect on VGC collapse for b~ > 5 can be formulated 
in terms of the source parameter. It is known that the cavity energy is expressed in terms 
of its maximum volume by the expression 

T'V~ = 4 / 3 n p ~ R S m = .  

If we take into account that the fraction of source energy converted to cavity energy in the 
case of an underwater spark does not exceed 40% (50% of the discharge energy is removed by 
the shock wave and 10% is expended on light and heat emission), the condition for absence of 
an effect of the solid wall can be written in the form 

bo > 5 ~!W/,,~ 

where Wo = CU~/2 is the energy stored in the capacitor bank. This inequality is enhanced, 
since in real conditions some of Wo is irreversibly lost in active components of the dis- 
charge circuit (apart from the spark channel). 

The maximum velocity of the cavity center (the experimental values for T = 0.95 were 
used) was compared with that calculated from Levkovskii's equation [5] for a model of spher- 
ically symmetric collapse 

where 

x :  | /  + + V + 

o: _32 (1 + o. 
~Omin ~ b~4/3 

The gas content 6 = Po/P= of the cavity was determined from the first integral equation 
of motion of its boundary, written for a time TI preceding the start of collapse T = ro = 0, 

6 =  ' 

where R: and v: are the normalized radius and velocity of the cavity, respectively, deter- 
mined from experiment at T = TI. The adiabatic exponent of the gas, as in [5], was taken as 
4/3. The results of the comparison are given in Table I, which shows that the experimentally 
determined motion of the cavity toward the solid surface is 2-4 times more rapid than theory 
predicts. This discrepancy is probably due to the use of the very approximate reflection 
method [5] for the description of VGC collapse. This method provides a correct picture of 
the effect of distance from the wall on the maximum velocity of motion of the cavity toward 
it. 

The cavity collapse time is greater than that calculated by Rayleigh, but the difference 
is insignificant (10-15%). The increase in collapse time of the cavity as it approaches the 
wall is due to the significant reduction of the velocity of the lower boundary of the cavity 
in comparison with the corresponding process in an unbounded medium. Levkovskii's equation 
[5] can be used for a quantitative assessment of the effect of a plane wall on the collapse 
time. 

Thus, the development of an underwater spark at a depth exceeding 2Kma x [16] and at a dis- 
tance of more than 5Rma x from a solid plane wall is the same as in an unbounded liquid. When 
these boundary surfaces are closer to the wall the special features of the process due to the 
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TABLE 1 

b; 
theor 

Vfmax 
exp �9 

vf max 

0,7 

5,i2 

1,1 

1,t8 

2,4 

t,2 

1,02 

2,1 

i ,6 

0,65 

19 

2,2 

0,32 

1,3 

5,5 

0,07 

0 

asymmetric boundary conditions must be taken into account. The most applicable results for 
numerical solution of the problem can be obtained by the use of the marker-and-cell tech- 
nique [9]. 
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